
Citation: Hu, K.; Li, H.; Zhuang, J.;

Hao, Z.; Fan, Z. Efficient Focus

Autoencoders for Fast Autonomous

Flight in Intricate Wild Scenarios.

Drones 2023, 7, 609. https://doi.org/

10.3390/drones7100609

Academic Editors: Enrico Boni and

Michele Basso

Received: 12 August 2023

Revised: 18 September 2023

Accepted: 22 September 2023

Published: 27 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Efficient Focus Autoencoders for Fast Autonomous Flight in
Intricate Wild Scenarios
Kaiyu Hu 1,†, Huanlin Li 1,†, Jiafan Zhuang 1,2,3,*, Zhifeng Hao 1,* and Zhun Fan 1,2,3,*

1 College of Engineering, Shantou University, Shantou 515063, China; 22kyhu@stu.edu.cn (K.H.);
21hlli@stu.edu.cn (H.L.)

2 Key Laboratory of Intelligent Manufacturing Technology, Shantou University, Ministry of Education,
Shantou 515063, China

3 International Cooperation Base of Evolutionary Intelligence and Robotics, Shantou University,
Shantou 515063, China

* Correspondence: jfzhuang@stu.edu.cn (J.Z.); haozhifeng@stu.edu.cn (Z.H.); zfan@stu.edu.cn (Z.F.)
† These authors contributed equally to this work.

Abstract: The autonomous navigation of aerial robots in unknown and complex outdoor environ-
ments is a challenging problem that typically requires planners to generate collision-free trajectories
based on human expert rules for fast navigation. Presently, aerial robots suffer from high latency
in acquiring environmental information, which limits the control strategies that the vehicle can
implement. In this study, we proposed the SAC_FAE algorithm for high-speed navigation in complex
environments using deep reinforcement learning (DRL) policies. Our approach consisted of a soft
actor–critic (SAC) algorithm and a focus autoencoder (FAE). Our end-to-end DRL navigation policy
enabled a flying robot to efficiently accomplish navigation tasks without prior map information by
relying solely on the front-end depth frames and its own pose information. The proposed algorithm
outperformed existing trajectory-based optimization approaches at flight speeds exceeding 3 m/s in
multiple testing environments, which demonstrates its effectiveness and efficiency.

Keywords: deep reinforcement learning; soft actor–critic; focus autoencoder; unmanned aerial
vehicle; autonomous navigation

1. Introduction

Flying robots are among the most flexible man-made robots developed to date. With
their high level of maneuverability, these robots can navigate through complex and chal-
lenging environments, including natural forests and modern urban buildings, and they
can reach areas that most other human-made robots cannot. Their flexibility has led to the
development of numerous applications, including environmental mapping [1,2], patrol in-
spection [3], search and rescue [4], logistics automation [5], entertainment performances [6],
and agricultural automation [7]. Flying robots have an incredible level of autonomy, thereby
enabling them to achieve previously impossible missions. To this end, the autonomous
navigation capability of a flying robot enables it to safely interact with the environment
and fly to its destination automatically without human intervention.

The autonomous navigation capability of the flying robot enables the aircraft to safely
interact with the environment and fly to its destination automatically without human
intervention. After years of continuous development and research [8,9], many previous
research efforts have led to the development of flying robots in the field of full autonomy,
thus freeing the hands of human expert pilots. However, developing end-to-end navigation
methods that are capable of robust flight at high speeds in complex environments is a
long-standing challenge that remains unsolved. Traditional trajectory-based optimization
methods need to prebuild a mathematical model for the environment, which usually re-
quires a map construction procedure, such as the ESDF map [10–16]. However, the mapping

Drones 2023, 7, 609. https://doi.org/10.3390/drones7100609 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7100609
https://doi.org/10.3390/drones7100609
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0002-4232-8229
https://doi.org/10.3390/drones7100609
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7100609?type=check_update&version=1


Drones 2023, 7, 609 2 of 15

procedure tends to be time-consuming, and it is difficult to meet the real-time requirements.
Imitation-learning-based methods train a policy generator based on a large amount of
expert experiences [17,18]. However, by only imitating the human experience, the learned
policy generator cannot handle unseen scenarios and would make a inappropriate decision.

In recent years, learning-based end-to-end algorithms such as soft actor–critic (SAC) [19]
combined with convolutional neural networks have been investigated. SAC is an offline
deep reinforcement learning (DRL) algorithm that employs a stochastic policy to maximize
the sample utilization. These end-to-end algorithms can directly map the visual observa-
tions, attitude, and desired target information of a flying robot to the action output of the
agent. In related work [20], a proposed sensor-level DRL-based policy surpassed tradi-
tional algorithms in complex pedestrian scenario navigation tasks using a ground robot
platform, which was greatly impressive. Although neural-network-based methods may be
less explainable, they are still preferred, since they do not require rigorous mathematical
proofs or tedious theoretical analyses. In the study of Xue et al. [21], seven ranging sensors
were used for the perception of the environment, and a reinforcement learning approach
based on an actor–critic framework was used to the achieve autonomous navigation of the
UAV in an unknown environment. Similarly, in Zhang et al.’s study [22], more than seven
laser ranging sensors were used to sense the environment, and an improved TD3-based
algorithm was used to realize an autonomous navigation task for a UAV in a multi-obstacle
environment. However, both methods are dependent on ranging sensors, and neither of
them can accurately perceive the environment in the UAV’s forward direction.

In this work, our algorithm assumption is that a UAV can achieve intelligent naviga-
tion by only relying on visual inputs and its own attitude information. The reason behind
this assumption is inspired by human experiences. Humans can achieve autonomous
exploration and navigation in an unknown and complex environments based on visual
observation. Therefore, we follow the deep reinforcement learning route and focus on
designing an efficient visual processing procedure. Our proposed method mainly uti-
lizes vision sensors and onboard inertial measurements to achieve the robust autonomous
navigation of flying robots. In contrast to existing works, it does not require computa-
tion or prebuilt maps, which can effectively reduce the perception latency. To tackle the
low-sample complexity issue [23] in DRL, a previous work, SAC_RAE [24], has been pro-
posed to use a regularized autoencoder (RAE) to project raw pixels into a latent state
before being fed into the DRL module. However, to improve the processing efficiency,
the SAC_RAE downsamples the projected feature map in the autoencoder multiple times,
which results in significant information loss. In this work, we propose a focus autoen-
coder (FAE) to enhance the representative ability of the features with a large receptive
field while still keeping the processing procedure efficient. We conducted extensive exper-
iments to validate the effectiveness of our method, as shown in Figure 1. Our proposed
SAC_FAE can outperform SAC_RAE and trajectory-based optimization methods by 10%
and 19% in the navigation success rate, respectively. In addition, our proposed SAC_FAE
outperformed other methods in multiple test environments, which validates the effec-
tiveness and good robustness of our method. Our code implementation is available at
https://github.com/LHL6666/SAC_FAE (accessed on 23 September 2023).

The rest of this paper is organized as follows. We review the related works on the
autonomous navigation of aerial robots in Section 2. Section 3 provide the details of
our proposed method. Section 4 and Section 5 provide a detailed introduction of our
experimental setup and an evaluation of the experimental results, respectively. Finally, we
conclude the work in Section 6.

https://github.com/LHL6666/SAC_FAE


Drones 2023, 7, 609 3 of 15

Figure 1. A snapshot of a flying robot deployed with the proposed method flying in one of the
experimental scenarios. Trajectories shown of proposed flying robot autonomously navigating
through a natural forest scene.

2. Related Works

In the field of automatic navigation for flying robots, various approaches to achieve
autonomous flight have been proposed in the literature, which can be broadly catego-
rized into the following three types: (1) Trajectory-based optimization methods: These
methods involve designing a set of optimal trajectories that the robot should follow to
reach its destination. They commonly rely on mathematical models and algorithms to
generate the trajectories, and they typically require accurate information about the envi-
ronment and the robot’s dynamics; (2) Imitation-learning-based methods: These meth-
ods require a large amount of expert experience to fit an AI model that performs well
in specific environments, but they have poorer generalization and exploration capabil-
ities; (3) Reinforcement-learning-based methods: These methods represent a promising
approach to achieving autonomous flight, which involves training an intelligent agent
to learn how to navigate by interacting with its environment and receiving feedback in
the form of rewards or penalties. Reinforcement-learning-based methods require a large
amount of data for training, but they can use simulation software to obtain this data, thus
making them more cost-effective than other methods. Additionally, the agent can continu-
ously explore and learn from its environment, thus ultimately achieving comparable results
to human experts. Next, we will introduce these methods in more detail.

2.1. Trajectory-Based Optimization Algorithms

Fast-Planner [25] and EGO-Planner [26] utilize certain search rules to find collision-
free paths and optimize those paths for dynamic feasibility and smoothness. Fast-Planner
features its stability, which is based on the approach of projecting depth images onto point
clouds to construct ESDF maps and subsequently performing a path search and trajectory
optimization. Since the planning algorithm needs to operate on the constructed ESDF map,
the delay of the observation information becomes more prominent. This also means that, in
order to achieve better performance, the speed of the flying robot must be strictly limited.
Moreover, it should be noted that, due to the adaptive modification of the target point by
trajectory optimization, Fast-Planner is not suitable for tasks in challenging environments
requiring high-precision navigation. In navigation experiments conducted in complex



Drones 2023, 7, 609 4 of 15

scenes, the planner may exhibit conservative behaviors, because the target point does not
impose a sufficient constraint on the behaviors, thereby resulting in a higher likelihood of
task timeout without completion.

EGO-Planner is an improved planning algorithm that is based on Fast-Planner with
an improved decision-making ability. This reduces the probability of task timeout while
increasing the success rate. Interestingly, even when the planning horizon of EGO-Planner
is increased several times, the algorithm still boldly explores and plans trajectories filled
with exciting maneuvers such as frequent emergency turns for flying robots. In addition,
the planner requires frequent restarts to reduce data errors.

For navigation in complex unknown environments, these typical algorithms combine
online mapping and traditional planning algorithms. From an engineering perspective,
splitting the navigation task into environmental perception and local planning is attractive,
because each component can be performed in parallel, thereby making the overall system
more efficient and interpretable. However, there is a time–space mismatch between the
output of the perception module and the joint debugging of the planner, which makes
the interaction between different stages amenable to compound errors to a large extent.
Additionally, their sequential nature introduces additional delays that make maneuvering
at high speeds and with agility difficult. Although these issues can be mitigated to some
extent by manual tuning with expert knowledge, the divide-and-conquer principle that
prevails in autonomous flight research in unknown environments commonly imposes
fundamental limits on the speed and agility that flying robotic systems can achieve.

2.2. Imitation-Learning-Based Algorithms

Imitation-learning-based agents learn how to navigate by observing the trajectories
of human experts or other robots that have completed specific tasks. Typically, a large
volume of observational data is collected and used to train a neural network policy that
can replicate an expert’s decision-making process. The policy then predicts the next action
to be taken from the input observation data and achieves the navigation goal by executing
those actions. Imitation-learning-based algorithms are simple to train and, with sufficient
training data, robots can learn how to navigate on their own. However, if the training data
are insufficient or noisy, the policy may fail to make an optimal decision. Additionally,
since the algorithm learns and selects actions based on existing data, it may be unable to
handle situations it has never seen before. Typical published studies [18,27,28] used an
imitation learning algorithm to train a policy as closely as possible to the expert’s behavior.
However, the policy was heavily dependent on the input experience.

2.3. Deep-Reinforcement-Learning-Based Algorithms

Recently, research on end-to-end robot navigation using DRL has become increasingly
popular. Yarats et al. [24] proposed a SAC_AE policy with regularization constraints on the
decoder loss. Then, in [29], Huang et al. used the regularized SAC_AE policy (SAC_RAE) to
complete a distributed multiUAV collision avoidance task, where the flying robots were able
to avoid each other and reach the target point using only the depth image from a front-facing
deep camera. However, the validity of this policy was not well-demonstrated, because
the experiment was conducted in an unobstructed open space. Following the success of
the transformer [30] in the CV field, a combination of the transformer and reinforcement
learning has been proposed in several works [31–33]. In these works, transformers were
used to extract feature information from observation, which was then input into the policy
network for learning, thereby achieving satisfactory results in their task scenarios.

However, we have noticed that the introduction of transformer modules in DRL
may make policy training more challenging. Nevertheless, the literature suggests that it
is theoretically possible to use vision transformers to build an encoder network for the
perception module, which takes in all observation information (including depth images
and agent state information), extracts latent variables, and computes the attention between
them. In practice, transformer modules may lead to unstable learning, particularly in



Drones 2023, 7, 609 5 of 15

situations in which the agent’s action set is rich and continuous. Therefore, to address this
issue, we explored methods to increase the receptive field of convolutional modules, rather
than relying solely on the large receptive field advantage of transformer modules.

3. Methodology
3.1. Problem Formulation

The objective of this study was to enable a flying robot to navigate rapidly in complex
and unpredictable wild environments using DRL. The agent was limited to receiving only
the depth image within a 15-m range ahead (consistent with the ZED Mini stereo camera)
and its own pose information, thereby leading to restricted observation of the interaction
process with the environment. Therefore, this study falls under the category of POMDP
(Partially Observable Markov Decision Process), described as a 7-tuple (S ,A, T ,R, Ω,O, γ).
Therein, the state space S represents the hidden variable, A is the action space, function
T (s′ |s, a) denotes the state transition probability,R is the reward function, O is the obser-
vation space, γ is the discount factor, and Ω(o|s, a) represents the observation probability.

At the beginning of each episode, target points are randomly generated in an inter-
active environment with a constant Euclidean distance. The episode ends only when the
target point is reached, timed out, or when the distance to the obstacle is less than that of
the safe value. Specifically, at each time step t, the flying robot obtains a frame for visual
observation ot

z and a frame for pose observation ot
p. It then executes action at, and it obtains

the environment’s reward rt. By repeating this process, the strategy guides the agent to
avoid obstacles and reach the target point by outputting the desired action.

3.2. Policy Setup
3.2.1. Observation Space

The pose observation op consists of three parts: op = [og, ov, oa]. Therein, og denotes
the target position information in the body coordinate system, ov denotes its own velocity
observation, and oa represents the acceleration observation. The visual observation oz
includes four consecutive 160 × 120 depth images at adjacent moments. At each time step
t, the observation information obtained by the agent is ot = [ot

z, ot
p].

3.2.2. Action Space

Our agent enjoys complete control freedom without explicit limitations on its action
space. At each time step t, our policy outputs an action command consisting of four
degrees of control: vx, vy, vz, and yaw_rate. vx, represents velocity in the x direction of
the body coordinate system for the scaling factor k ∈ (0, 4), and it has a value range of
k · 3 · [−0.2, 1.0] m/s. Similarly, vy and vz representing velocity in the y and z directions,
respectively, and they have a value range of k · 2 · [−1.0, 1.0] m/s, while yaw_rate repre-
sents the rate of change in the heading angle of the agent, and it has a value range of
k · 1.6 · [−1.0, 1.0] rad/s; k is always equal to 1 in our experiments.

3.2.3. Reward Setup

Sparse rewards can make it challenging for reinforcement learning algorithms to learn,
because the agent must undergo multiple trial-and-error iterations to discover the right
course of action. However, incorporating auxiliary rewards can facilitate learning the
correct policy, thus leading to a faster and more efficient learning process. Our reward
function is composed of two distinct components. First, the rg guides the agent to complete
the primary task. The second component, ra, assists the agent in learning a policy to
expedite the achievement of this objective and penalizes the agent for outputting an
inefficient action to encourage the generation of a more efficient output. At time step t, the
reward function can be described as follows:

rt = rt
g + rt

a (1)



Drones 2023, 7, 609 6 of 15

For a basic reward, Rb (Rb ∈ N+), rt
g, and rt

a are calculated as follows:

rt
g =

{
Rb if

∥∥gt
∥∥ < 1.0

−Rb if collision occurs
(2)

rt
a = Rb · (

∥∥gt−1 − gt
∥∥

g0 − α

tmax −
β

tmax ·M) (3)

The α parameter encourages the flying robot to reach its target point as quickly as
possible, either by taking a shorter path or by moving at a faster speed. The β parameter
motivates the flying robot to reduce the angle between the velocity vector direction and
the visual observation direction to reduce unnecessary blind flight adventures of the flying
robot. For example, a flying robot may choose to climb directly vertically to the top of an
obstacle and then move toward a target point to avoid the obstacle, or the flying robot may
appear to fly sideways to the left or right or backwards so that it is not able to visually
observe movement in the direction. The settings for the α and β parameters should be
between 0 and 1. The M parameter is used to determine whether the flying robot has
abnormal movements, such as unnecessary blind flight adventures; if the strategy outputs
an abnormal action, then M = 1. g0 represents the Euclidean distance between the starting
point and the target point,

∥∥gt−1 − gt
∥∥ represents the Euclidean distance of the straight-line

distance that the agent moves to the target point at the current moment, and tmax represents
the maximum time steps of actions that can be executed in each round of episode.

In our experiments, we set α, β, and Rb to 0.1, 0.5, and 20, respectively.

3.3. Network Architecture

Our method flow chart is shown in Figure 2. Our method consists of three key
modules, i.e., the vision encoder, the state encoder, and the reinforcement learning (RL)
policy module. Two encoders extract critical information and project it onto a feature vector
on depth images and IMU information, respectively. After that, two extracted features are
concatenated and fed into a reinforcement learning policy module for strategy learning.
According to the current environment, the RL module returns a set of actions for UAV
control, including velocity on three dimensions and yaw rate.

Depth image

IMU

Target Position

Reinforcement 
Learning Policy

Vision Features

State
Encoder

Vision 
Encoder Action

State Features

UAV
Control

𝑣𝑣𝑥𝑥 𝑣𝑣𝑦𝑦
𝑣𝑣𝑧𝑧 𝑦𝑦𝑦𝑦𝑦𝑦 𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟

𝒐𝒐𝒈𝒈 = (𝒙𝒙,𝒚𝒚, 𝒛𝒛)

{𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦 ,𝑣𝑣𝑧𝑧,𝑦𝑦𝑦𝑦𝑦𝑦 𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟}

Figure 2. Method overview.

Our SAC_FAE network structure, as shown in Figure 3, employs convolution to
acquire latent variables from visual observations. However, we did not simply utilize
plain convolutional autoencoders. Instead, we utilized a focus module to execute a unique
type of convolution operation. The focus module was originally embodied in YOLO v5



Drones 2023, 7, 609 7 of 15

and is featured in the use of the number of channels in exchange for the resolution of
the feature map. This operation groups the input tensors by channel, arranges pixels in
each channel in a particular order, and performs ordinary convolution operations. This
grouping and rearrangement process effectively decreased the amount of computation
and memory consumption required by the focus module. Specifically, we used a slicing
operation to divide a high-resolution feature map into multiple low-resolution feature
maps and concatenated them on channels.

Figure 3. Schematic diagram of SAC_FAE network structure. Each linear layer is followed by
a SiLU activation function, where Conv represents the convolutional layer, Deco represents the
deconvolution layer, and BN stands for batch normalization. The measurement feature and encoder
feature are concatenated in the last dimension and transferred to the multilayer perception (MLP)
layer of the actor and critic networks.

This approach enabled us to complete downsampling operations without losing
information and enhance the feature expression capacity of the proposed model through a
larger receptive field. Although we can obtain lossless feature information and enhance the
global receptive field through the focus operation, much of the feature information is still
redundant and does not help in model training. Therefore, after each focus operation, we
used a 3× 3 convolutional layer to reduce the number of channels to half of the original.
Simultaneously, we truncated the gradients from the actors to avoid the impact of the
exploration process on the uncertainty of the encoder learning.

The encoder extracted 384 latent variable features (encoder feature dim) from the input
image observations. For the pose and target point of the flying robot, 128 latent variable
features (measurement feature dim) were obtained after two layers of MLP. Both the actor
and critic had a 4-layer multilayer perception (MLP) with 1024 units.

3.4. Training Strategies

To improve the sample efficiency, we utilized experience replay buffers to store the
environment interaction trajectories. We discovered that the hyperparameters of the buffer
capacity and training frequency play an important role in determining the final outcome.
Setting the buffer capacity too high can impede the learning process and increase model
complexity, because there will be differences between the data generated before and after



Drones 2023, 7, 609 8 of 15

the policy interacts with the environment. When the replay buffer is set too small, it leads
to unstable training, and the results tend to fall into local optima. Therefore, the buffer
capacity was set to store approximately 50 interaction fragments and train them at the end
of each round. The pseudocode for our policy-training process is presented in Algorithm 1.

Algorithm 1: Policy training

Initialize environment, policy, and replay buffer B;
for i = 0 to max episodes do

for j = 0 to max timesteps do
if not terminal then

Select action aj;
Interact with environment;
Receive rj, oj+1, terminal;
Store [oj, aj, rj, oj+1, terminal] to B;

end
end
while cnt < 200 do

Randomly sample batches of trajectories [o, a, r, onext, terminal] from B;
update policy network;

end
end

4. Experimental Setup
4.1. Simulation Assessment

We built multiple simulation environments in Unreal Engine 4, and we used the
AirSim plugin to complete the flight simulation of the flying robot. The flying robot was
trained on a computer equipped with an Intel i9-11900k, NVIDIA RTX A4000, with 64 GB
of RAM. A policy network was constructed using the Pytorch library. The frequency for
obtaining the depth image of the flying robot was 10 Hz (160× 120), the control frequency
was 20 Hz (main loop frequency), and the camera field of view was 120°. In all experiments,
the effective range of the depth image was [0.1, 15.0] meters, which is consistent with
the popular ZED Mini stereo camera. Gaussian noise with a mean of 0 and a variance of
0.1 was added to the acquired true depth image. Using home as the origin, before the start
of each episode, a point on a circle with a radius of 20.0 m was randomly selected as the
target point.

4.2. Policy Hyperparameter

The hyperparameters we set during policy training are listed in Table 1. The listed
hyperparameters can be divided into three categories. First, hyperparameters of the
optimizer for model training were used. Second, hyperparameters of the feature extraction
procedure were used. Here, we considered the feature dimensions of the visual feature and
state feature, respectively. Third, hyperparameters of the reinforcement learning procedure
were used.

Table 1. Hyperparameters.

Item Name Value

Activation SiLU
Optimizer Adam
Learning rate 3 × 10−4

Encoder feature dim 384
Measurement feature dim 128



Drones 2023, 7, 609 9 of 15

Table 1. Cont.

Item Name Value

Max time steps 400
Replay buffer B capacity 25,600
Batch size 256
Gamma 0.95
Actor update frequency 1
Actor log stddev bounds [−10, 2]
Critic target update frequency 2
Critic encoder soft-update rate 0.025
Critic Q-function soft-update rate 0.005

4.3. Performance Metrics

To reflect the effectiveness and robustness of the strategy over N consecutive episodes
(N = 50), we used the following performance indicators:

• Success rate (SR): The percentage of flying robots that successfully reached the corre-
sponding target point without collision in limited time step.

• Crash rate (CR): The percentage of total experiments in which the distance between
the flying robot and the obstacle was less than the safety value during the naviga-
tion process.

• Success rate weighted by path length (SPL): The proportion of robots that successfully
reached the target location, considering the path length, which is calculated as follows:

1
N

N

∑
i=1

Si
li

max(pi, li)
(4)

where Si is a binary symbol marking the success of the ith episode, pi refers to the
actual flight trajectory length of the robot in the ith episode, and li is the Euclidean
distance from the home point to the target point in the ith episode.

• Average Speed: The average speed of the flying robot, which is obtained from the
average speed of each episode.

• Max Speed: The maximum speed of the flying robot.

4.4. Experimental Steps

To verify the generalizability of the policy, we conducted training within a single
scenario and evaluated its performance across various scenarios. During experiments, we
implemented all methods in our simulation systems following their original implemen-
tations. The simulation settings were kept consistent during all experiments, including
resolution and effective distance of depth images, frequency of controller reaction, and
image acquisition. For the setup of the experimental scene, we simulated three testing
scenarios with different difficulties by adjusting the obstacle densities (0.1 m−3, 0.5 m−3,
and 0.9 m−3 for simple, medium, and complex scenarios, respectively), which can be
clearly observed in Figure 4. After training in Scene 2, our strategy underwent multiple
rounds of performance metric calculations in all three scenes to exhibit its robustness
and effectiveness.



Drones 2023, 7, 609 10 of 15

Scene1

Scene2

Scene3

Simple

Complex

Medium

Figure 4. Experimental scenes.

5. Results

Here, the SAC_RAE [29] was selected for comparison, since it is the first work to
achieve distributed multiUAV collision avoidance using deep reinforcement learning (DRL)
techniques. In addition, since we focused on improving the visual feature extraction in
this work, we also replaced the vision model of the SAC_RAE with two popular and
strong architectures, i.e., CNN and ViT, to construct two stronger variants for comparison,
i.e., SAC_CNN and SAC_ViT. In addition, we also selected two very popular traditional
trajectory generation optimization methods—Fast-Planner [25] and EGO-Planner [26]—for
comparison. We trained all of the DRL-based policies for 1200 episodes, and we measured
their performance outcomes using the aforementioned metrics in three different scenarios,
as shown in Table 2 and Figure 5. From Table 2, we have three observations. First, from
simple to complex scenarios, the performance of all methods became reduced, which
is reasonable, since it is difficult for autonomous navigation to take place in a complex
environment. Second, our method could outperform previous state-of-the-art (SOTA)
methods in most settings, with both a higher success rate and speed. Third, the proposed
model performed well in the timeout metric across multiple scenarios, which reflects the
decisiveness of the strategy in situations where multiple optimal solutions may exist.

Table 2. Experimental results.

Method

Scene 1 (Simple) Scene 2 (Medium) Scene 3 (Complex)

Flight Quality Speed (m/s) Flight Quality Speed (m/s) Flight Quality Speed (m/s)

SR CR SPL Avg Max SR CR SPL Avg Max SR CR SPL Avg Max

FAST-Planner [25] 0.10 0.32 0.10 1.64 3.07 0.16 0.34 0.14 1.80 3.43 0.10 0.74 0.10 2.40 3.36
EGO-Planner [26] 0.80 0.18 0.76 1.84 2.84 0.65 0.25 0.60 2.20 2.87 0.42 0.50 0.36 1.60 3.36

SAC_RAE [29] 0.80 0.16 0.66 1.96 3.32 0.62 0.38 0.60 2.36 3.38 0.14 0.86 0.13 2.29 3.15
SAC_CNN 0.56 0.44 0.44 2.15 3.18 0.48 0.52 0.43 2.39 3.32 0.20 0.80 0.18 2.37 3.19
SAC_ViT 0.00 0.26 0.00 0.86 1.12 0.00 0.02 0.00 0.85 1.11 0.00 0.20 0.00 0.86 1.12

SAC_FAE (Ours) 0.82 0.12 0.71 2.37 3.54 0.74 0.26 0.71 2.34 3.52 0.26 0.74 0.23 2.27 3.47
The numbers in bold represent the optimal data for this column.



Drones 2023, 7, 609 11 of 15

In the absence of pretrained weights, the SAC_ViT agent, based on its transformer
architecture, interacted with the environment to learn. Although this model possesses a
low crash rate compared to the other models, this is due to the fact that the model has
only mastered basic machine control, and its success rate was the lowest across scenarios.
Our analysis suggests that self-attention mechanisms require extensive learning and even
prior knowledge, which are similar to the approach described in [32], where they first
employed imitation learning from a large number of expert trajectories to endow their
strategy with some exploratory ability from the outset. However, long-term training
or the provision of expert trajectories is expensive and time-consuming. Under the same
experimental settings as those of the proposed method, the SAC_ViT performance remained
significantly improved.

Figure 5. The comparison result in Scene 1.

In the SAC_RAE architecture, this strategy performs multiple downsampling pro-
cedures on the projection feature map in the autoencoder, which is prone to a loss of
obstacle position information, and the probability of a collision or timeout will increase.
As is shown in Figure 6, the average reward of this architecture fluctuated significantly
during exploration.

Within the SAC_CNN architecture, only the gradient of the critic network was utilized
in the perception module of the policy, thus resulting in the fastest initial learning speed.
However, due to the instability of the critic during exploration, significant fluctuations can
occur. As a result, the convergence performance of this policy was comparable to that of
the SAC_RAE.

In addition, it is worth noting that the Fast-Planner algorithm was also effective, and
its timeout cases were usually due to modifications of the target position made by the
planner to ensure a better hovering attitude. Actually, in Fast-Planner, the inability to
place control points around obstacles presents a significant hindrance in dense obstacle
environments for flying robots; its selection of the control points avoids obstacles as much
as possible, but camera noise can sometimes lead to false perceptions of planned trajectories
or false perceptions as to whether the control points are within obstacles, thus leading to
replanning. In practice, the flying robots deployed with the Fast-Planner algorithm typically
came within 2.5 m of the expected target point in around 66% of the cases. The actual



Drones 2023, 7, 609 12 of 15

arrival at the target point itself occurred only rarely (though open scenes could facilitate
this). As our experiment considered navigation success only when the robot’s Euclidean
distance to its target was under 1.0 m, this prevented Fast-Planner from presenting the
same performance as EGO-Planner in the success rate metric.

EOG-Planner achieved a high success rates in most scenarios, especially in Scene 3,
where the success rate of EGO was higher than all the methods based on reinforcement
learning. The reason is that the simulation environments can only render depth images
at 10 Hz, which is significantly insufficient for fast flight in a complex environment. If
the camera signal is lost, the learned reinforcement learning strategy will sample a wrong
action, thereby leading to a higher crash rate. However, EGO-Planner modeled the UAV
dynamics and maintained the local map information. If the camera signal is lost, the
traditional planner can obtain the environment information from the built local map and
achieve the navigation.

Figure 6. A visual comparison result of the average return while agents interacted with the experi-
mental natural forest (blue line for Ours).

For the DRL-based strategies, we also display the average return during the training
process in Figure 6, where the shaded area represents the variance; it accounts for the
stability of the policy-training process.

6. Conclusions

We presented an effective focus autoencoder module in this study, which performed
the lossless downsampling of feature maps through slicing operations and achieved a larger
receptive field. Experimental results show that our method could outperform previous
SOTA methods in most settings, with both a higher success rate and speed. To demonstrate
the effectiveness of our strategy, we conducted multiple experiments ranging from simple to
complex scenarios in different complex environments. Our proposed method outperformed
in multiple test environments, thereby exhibiting good robustness.

Although we believe that there is great potential for combining deep reinforcement
learning with transformers, training intelligent agents based on transformers is challeng-
ing. We need to continuously develop more effective methods to promote community
growth and enable autonomous flying robots based on strong reinforcement learning to be
sufficiently powerful.



Drones 2023, 7, 609 13 of 15

Author Contributions: Conceptualization, Z.F.; methodology, H.L.; software, K.H. and H.L.; valida-
tion, K.H. and H.L.; formal analysis, K.H.; investigation, K.H. and H.L.; resources, K.H. and H.L.;
data curation, K.H.; writing—original draft preparation, K.H. and H.L.; writing—review and editing,
K.H., H.L., J.Z., Z.H. and Z.F.; visualization, K.H. and H.L.; supervision, Z.H.; project administration,
K.H., H.L., J.Z. and Z.F.; funding acquisition, J.Z. and Z.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was supported in part by the National Key R&D Program of China (grant
numbers 2021ZD0111501 and 2021ZD0111502), the Key Laboratory of Digital Signal and Image
Processing of Guangdong Province, the Key Laboratory of Intelligent Manufacturing Technology
(Shantou University), the Ministry of Education, the Science and Technology Planning Project of
Guangdong Province of China (grant number 180917144960530), the Project of Educational Commis-
sion of Guangdong Province of China (grant number 2017KZDXM032), the State Key Lab of Digital
Manufacturing Equipment and Technology (grant number DMETKF2019020), the National Natural
Science Foundation of China (grant number 62176147), the STU Scientific Research Foundation
for Talents (grant number NTF21001, NTF22030), the Science and Technology Planning Project of
Guangdong Province of China (grant number 2019A050520001, 2021A0505030072, 2022A1515110660),
the Science and Technology Special Funds Project of Guangdong Province of China (grant number
STKJ2021176, STKJ2021019), the Guangdong Special Support Program for Outstanding Talents
(2021JC06X549), and the Li Ka Shing Foundation Cross Research Project (2020LKSFG02D).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DRL Deep Reinforcement Learning
UAV Unmanned Aerial Vehicle
SAC Soft Actor–Critic
FAE Focus Autoencoder
RAE Regularized Autoencoder
ESDF Euclidean Signed Distance Field
POMDP Partially Observable Markov Decision Process
MLP Multilayer Perception
CNN Convolutional Neural Network
ViT Vision Transformer

References
1. Christiansen, M.P.; Laursen, M.S.; Jørgensen, R.N.; Skovsen, S.; Gislum, R. Designing and testing a UAV mapping system for

agricultural field surveying. Sensors 2017, 17, 2703. [CrossRef]
2. Leduc, M.B.; Knudby, A.J. Mapping wild leek through the forest canopy using a UAV. Remote Sens. 2018, 10, 70. [CrossRef]
3. Kim, S.; Kim, D.; Jeong, S.; Ham, J.W.; Lee, J.K.; Oh, K.Y. Fault diagnosis of power transmission lines using a UAV-mounted smart

inspection system. IEEE Access 2020, 8, 149999–150009. [CrossRef]
4. Tian, Y.; Liu, K.; Ok, K.; Tran, L.; Allen, D.; Roy, N.; How, J.P. Search and rescue under the forest canopy using multiple UAVs. Int.

J. Robot. Res. 2020, 39, 1201–1221. [CrossRef]
5. Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D.D.; Stuckey, P.J. Integrated task assignment and path planning for capacitated

multi-agent pickup and delivery. IEEE Robot. Autom. Lett. 2021, 6, 5816–5823. [CrossRef]
6. Loquercio, A.; Kaufmann, E.; Ranftl, R.; Dosovitskiy, A.; Koltun, V.; Scaramuzza, D. Deep drone racing: From simulation to

reality with domain randomization. IEEE Trans. Robot. 2019, 36, 1–14. [CrossRef]
7. Ju, C.; Son, H.I. Modeling and control of heterogeneous agricultural field robots based on Ramadge–Wonham theory. IEEE Robot.

Autom. Lett. 2019, 5, 48–55. [CrossRef]
8. Wu, K.; Wang, H.; Esfahani, M.A.; Yuan, S. Learn to navigate autonomously through deep reinforcement learning. IEEE Trans.

Ind. Electron. 2021, 69, 5342–5352. [CrossRef]

http://doi.org/10.3390/s17122703
http://dx.doi.org/10.3390/rs10010070
http://dx.doi.org/10.1109/ACCESS.2020.3016213
http://dx.doi.org/10.1177/0278364920929398
http://dx.doi.org/10.1109/LRA.2021.3074883
http://dx.doi.org/10.1109/TRO.2019.2942989
http://dx.doi.org/10.1109/LRA.2019.2941178
http://dx.doi.org/10.1109/TIE.2021.3078353


Drones 2023, 7, 609 14 of 15

9. Hu, H.; Zhang, K.; Tan, A.H.; Ruan, M.; Agia, C.; Nejat, G. A sim-to-real pipeline for deep reinforcement learning for autonomous
robot navigation in cluttered rough terrain. IEEE Robot. Autom. Lett. 2021, 6, 6569–6576. [CrossRef]

10. Oleynikova, H.; Burri, M.; Taylor, Z.; Nieto, J.; Siegwart, R.; Galceran, E. Continuous-time trajectory optimization for online uav
replanning. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon,
Republic of Korea, 9–14 October 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 5332–5339.

11. Ding, W.; Gao, W.; Wang, K.; Shen, S. An efficient b-spline-based kinodynamic replanning framework for quadrotors. IEEE Trans.
Robot. 2019, 35, 1287–1306. [CrossRef]

12. Zhou, B.; Pan, J.; Gao, F.; Shen, S. Raptor: Robust and perception-aware trajectory replanning for quadrotor fast flight. IEEE
Trans. Robot. 2021, 37, 1992–2009. [CrossRef]

13. Oleynikova, H.; Taylor, Z.; Fehr, M.; Siegwart, R.; Nieto, J. Voxblox: Incremental 3d euclidean signed distance fields for on-board
mav planning. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1366–1373.

14. Han, L.; Gao, F.; Zhou, B.; Shen, S. Fiesta: Fast incremental euclidean distance fields for online motion planning of aerial
robots. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China,
3–8 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 4423–4430.

15. Ratliff, N.; Zucker, M.; Bagnell, J.A.; Srinivasa, S. CHOMP: Gradient optimization techniques for efficient motion planning.
In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; IEEE:
Piscataway, NJ, USA, 2009; pp. 489–494.

16. Gao, F.; Lin, Y.; Shen, S. Gradient-based online safe trajectory generation for quadrotor flight in complex environments. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 3681–3688.

17. Ishihara, K.; Kanervisto, A.; Miura, J.; Hautamaki, V. Multi-task learning with attention for end-to-end autonomous driving. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021;
pp. 2902–2911.

18. Loquercio, A.; Kaufmann, E.; Ranftl, R.; Müller, M.; Koltun, V.; Scaramuzza, D. Learning high-speed flight in the wild. Sci. Robot.
2021, 6, eabg5810. [CrossRef] [PubMed]

19. Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.; Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. Soft actor-critic
algorithms and applications. arXiv 2018, arXiv:1812.05905.

20. Fan, T.; Long, P.; Liu, W.; Pan, J. Distributed multi-robot collision avoidance via deep reinforcement learning for navigation in
complex scenarios. Int. J. Robot. Res. 2020, 39, 856–892. [CrossRef]

21. Xue, Y.; Chen, W. A UAV Navigation Approach Based on Deep Reinforcement Learning in Large Cluttered 3D Environments.
IEEE Trans. Veh. Technol. 2022, 72, 3001–3014. [CrossRef]

22. Zhang, S.; Li, Y.; Dong, Q. Autonomous navigation of UAV in multi-obstacle environments based on a Deep Reinforcement
Learning approach. Appl. Soft Comput. 2022, 115, 108194. [CrossRef]

23. Barth-Maron, G.; Hoffman, M.W.; Budden, D.; Dabney, W.; Horgan, D.; Dhruva, T.; Muldal, A.; Heess, N.; Lillicrap, T. Distributed
Distributional Deterministic Policy Gradients. In Proceedings of the International Conference on Learning Representations,
Vancouver, BC, Canada, 30 April 30–3 May 2018.

24. Yarats, D.; Zhang, A.; Kostrikov, I.; Amos, B.; Pineau, J.; Fergus, R. Improving sample efficiency in model-free reinforce-
ment learning from images. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtual, 2–9 February 2021;
pp. 10674–10681.

25. Zhou, B.; Gao, F.; Wang, L.; Liu, C.; Shen, S. Robust and efficient quadrotor trajectory generation for fast autonomous flight. IEEE
Robot. Autom. Lett. 2019, 4, 3529–3536. [CrossRef]

26. Zhou, X.; Wang, Z.; Ye, H.; Xu, C.; Gao, F. Ego-planner: An esdf-free gradient-based local planner for quadrotors. IEEE Robot.
Autom. Lett. 2020, 6, 478–485. [CrossRef]

27. Karnan, H.; Warnell, G.; Xiao, X.; Stone, P. Voila: Visual-observation-only imitation learning for autonomous navigation. In
Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 2497–2503.

28. Watkins-Valls, D.; Xu, J.; Waytowich, N.; Allen, P. Learning your way without map or compass: Panoramic target driven visual
navigation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 24 October–24 January 2021; IEEE: Piscataway, NJ, USA, 2020; pp. 5816–5823.

29. Huang, H.; Zhu, G.; Fan, Z.; Zhai, H.; Cai, Y.; Shi, Z.; Dong, Z.; Hao, Z. Vision-based Distributed Multi-UAV Collision Avoidance
via Deep Reinforcement Learning for Navigation. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Kyoto, Japan, 23–27 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 13745–13752.

30. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
arXiv 2017, arXiv:1706.03762.

31. Chen, L.; Lu, K.; Rajeswaran, A.; Lee, K.; Grover, A.; Laskin, M.; Abbeel, P.; Srinivas, A.; Mordatch, I. Decision transformer:
Reinforcement learning via sequence modeling. Adv. Neural Inf. Process. Syst. 2021, 34, 15084–15097.

http://dx.doi.org/10.1109/LRA.2021.3093551
http://dx.doi.org/10.1109/TRO.2019.2926390
http://dx.doi.org/10.1109/TRO.2021.3071527
http://dx.doi.org/10.1126/scirobotics.abg5810
http://www.ncbi.nlm.nih.gov/pubmed/34613820
http://dx.doi.org/10.1177/0278364920916531
http://dx.doi.org/10.1109/TVT.2022.3218855
http://dx.doi.org/10.1016/j.asoc.2021.108194
http://dx.doi.org/10.1109/LRA.2019.2927938
http://dx.doi.org/10.1109/LRA.2020.3047728


Drones 2023, 7, 609 15 of 15

32. Huang, W.; Zhou, Y.; He, X.; Lv, C. Goal-guided Transformer-enabled Reinforcement Learning for Efficient Autonomous
Navigation. arXiv 2023, arXiv:2301.00362.

33. Esslinger, K.; Platt, R.; Amato, C. Deep Transformer Q-Networks for Partially Observable Reinforcement Learning. arXiv 2022,
arXiv:2206.01078.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Related Works
	Trajectory-Based Optimization Algorithms
	Imitation-Learning-Based Algorithms
	Deep-Reinforcement-Learning-Based Algorithms

	Methodology
	Problem Formulation
	Policy Setup
	Observation Space
	Action Space
	Reward Setup

	Network Architecture
	Training Strategies

	Experimental Setup
	Simulation Assessment
	Policy Hyperparameter
	Performance Metrics
	Experimental Steps

	Results
	Conclusions
	References

